[2017 New Pass 300-135 Exam By Exercising Lead2pass Latest 300-135 VCE And PDF Dumps (46-60)

2017 July Cisco Official New Released 300-135 Dumps in Lead2pass.com! 100% Free Download! 100% Pass Guaranteed! Our dumps have been reviewed and approved by industry experts and individuals who have taken and passed 300-135 exam. Lead2pass will have you prepared to take 300-135 test with high confidence and pass easily. Whether you are looking for 300-135 study guide, 300-135 exam questions, 300-135 exam dump or 300-135 test, Lead2pass.com has you covered. Following questions and answers are all new published by Cisco Official Exam Center: https://www.lead2pass.com/300-135.html QUESTION 46The implementations group has been using the test bed to do a 'proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. What is the solution to the fault condition? A. In Configuration mode, using the interface range Fastethernet 1/0/1 ?2, then switchport mode access vlan 10 command.B. In Configuration mode, using the interface range Fastethernet 1/0/1 ?2, then switchport access mode vlan 10 command.C. In Configuration mode, using the interface range Fastethernet 1/0/1 ?2, then switchport vlan 10 access command.D. In Configuration mode, using the interface range Fastethernet 1/0/1 ?2, then switchport access vlan 10 command. Answer: DExplanation: The problem here is that VLAN 10 is not configured on the proper interfaces on switch ASW1. Ticket 3: OSPF Authentication Topology Overview (Actual Troubleshooting lab design is for below network design) - Client Should have IP 10.2.1.3- EIGRP 100 is running between switch DSW1 & DSW2- OSPF (Process ID 1) is running between R1, R2, R3, R4- Network of OSPF is redistributed in EIGRP- BGP 65001 is configured on R1 with Webserver cloud AS 65002- HSRP is running between DSW1 & DSW2 Switches The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. This network consists of four routers, two layer 3 switches and two layer 2 switches. In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network, ASW1 and ASW2 are layer 2 switches.NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. The client workstations receive their IP address and default gateway via R4's DHCP server. The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary.Recently the implementation group has been using the test bed to do a 'proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. Each ticket has 3 sub questions that need to be answered & topology remains same. Question-1 Fault is found on which device, Question-2 Fault condition is related to, Question-3 What exact problem is seen & what needs to be done for solution Client is unable to ping IP 209.65.200.241 Solution: Steps need to follow as below:- When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 Ipconfig ----- Client will be receiving IP address 10.2.1.3- IP 10.2.1.3 will be able to ping from R4, R3, R2 but not from R1 - Check for neighborship of ospfsh ip ospf nei ---- Only one neighborship is forming with R2 & i.e. with R3Since R2 is connected to R1 & R3 with routing protocol ospf than there should be 2 neighbors seen but only one is seen-Need to check running config of R2 & R3 for interface Sh run ------ Interface Serial0/0/0/0.12 on R2 - Sh run ----- Interface Serial0/0/0/0 on R1 - Change required: On R1, for IPV4 authentication of OSPF command is missing and required to configure----- ip ospf authentication message-digest QUESTION 47The implementations group has been using the test bed to do a 'proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. On which device is the fault condition located? A. R1B. R2C. R3D. R4E. DSW1F. DSW2G. ASW1H. ASW2 Answer: AExplanation: As you will see, the problem in this situation is with OSPF on R1. It is missing the "ip ospf authentication message-digest" command on the Serial0/0/0/0.12 interface. QUESTION 48The implementations group has been using the test bed to do a 'proof-of-concept' that

requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. The fault condition is related to which technology? A. BGPB. NTPC. IP NATD. IPv4 OSPF RoutingE. IPv4 OSPF RedistributionF. IPv6 OSPF RoutingG. IPv4 layer 3 security Answer: DExplanation: The problem in this situation is with OSPF on router 1. It is missing the "ip ospf authentication messagedigest" command on the Serial0/0/0/0.12 interface. The problem statement tells us that the two routers are not able to become OSPF neighbors. QUESTION 49The implementations group has been using the test bed to do a `proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address.Use the supported commands to isolated the cause of this fault and answer the following questions.What is the solution to the fault condition? A. Enable OSPF authentication on the s0/0/0 interface using the ip ospf authentication message-digest commandB. Enable OSPF routing on the s0/0/0 interface using the network 10.1.1.0 0.0.0.255 area 12 command.C. Enable OSPF routing on the s0/0/0 interface using the network 209.65.200.0 0.0.0.255 area 12 command.D. Redistribute the BGP route into OSPF using the redistribute BGP 65001 subnet command. Answer: AExplanation:R2 is correctly configured for OSPF authentication, including the "ip ospf authentication message-digest" command listed properly under the sub-interface Serial0/0/0.12. R1 is missing this command. Ticket 4: BGP Neighbor Topology Overview (Actual Troubleshooting lab design is for below network design) - Client Should have IP 10.2.1.3- EIGRP 100 is running between switch DSW1 & DSW2-OSPF (Process ID 1) is running between R1, R2, R3, R4- Network of OSPF is redistributed in EIGRP- BGP 65001 is configured on R1 with Webserver cloud AS 65002- HSRP is running between DSW1 & DSW2 Switches The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. This network consists of four routers, two layer 3 switches and two layer 2 switches. In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network, ASW1 and ASW2 are layer 2 switches. NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. The client workstations receive their IP address and default gateway via R4's DHCP server. The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.DSW1, DSW2 and R4 are running RIPng process name RIP ZONE. The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. Recently the implementation group has been using the test bed to do a 'proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. Each ticket has 3 sub questions that need to be answered & topology remains same.Question-1 Fault is found on which device,Question-2 Fault condition is related to,Question-3 What exact problem is seen & what needs to be done for solution Client is unable to ping IP 209.65.200.241 Solution: Steps need to follow as below:-When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 ipconfig ----- Client will be receiving IP address 10.2.1.3- IP 10.2.1.3 will be able to ping from R4, R3, R2, R1- Look for BGP NeighbourshipSh ip bgp summary ----- No O/P will be seen- Check for interface IP & ping IP 209.65.200.225 ---- Reply will be received from Webserver interface- Look for peering IP address via sh run on R1 interface serial 0/0/1 - Since we are receiving icmp packets from Webserver interface on R1 so peering IP address under router BGP is configured wrong IP but with correct AS nos. - Change required: On R1 under router BGP Change neighbor 209.56.200.226 remote-as 65002 statement to neighbor 209.65.200.226 remote-as 65002 QUESTION 50The implementations group has been using the test bed to do a 'proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. On which device is the fault condition located? A. R1B. R2C. R3D. R4E. DSW1F. DSW2G. ASW1 Answer: AExplanation: The BGP neighbor statement is wrong on R1. QUESTION 51The implementations group has been using the test bed to do a 'proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device

security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. The fault condition is related to which technology? A. BGPB. NTPC. IP NATD. IPv4 OSPF RoutingE. IPv4 OSPF RedistributionF. IPv6 OSPF RoutingG. IPv4 layer 3 security Answer: AExplanation:On R1 under router the BGP process Change neighbor 209.56.200.226 remote-as 65002 statement to neighbor 209.65.200.226 remote-as 65002 QUESTION 52The implementations group has been using the test bed to do a proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. What is the solution to the fault condition? A. Under the BGP process, enter the bgp redistribute-internal command.B. Under the BGP process, bgp confederation identifier 65001command.C. Deleted the current BGP process and reenter all of the command using 65002 as the AS number.D. Under the BGP process, delete the neighbor 209.56.200.226 remote-as 65002 command and enter the neighbor 209.65.200.226 remote-as 65002 command. Answer: DExplanation:On R1 under router BGP change neighbor 209.56.200.226 remote-as 65002 statement to neighbor 209.65.200.226 remote-as 65002 Ticket 5: NAT ACL Topology Overview (Actual Troubleshooting lab design is for below network design) - Client Should have IP 10.2.1.3- EIGRP 100 is running between switch DSW1 & DSW2- OSPF (Process ID 1) is running between R1, R2, R3, R4- Network of OSPF is redistributed in EIGRP- BGP 65001 is configured on R1 with Webserver cloud AS 65002- HSRP is running between DSW1 & DSW2 Switches The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. This network consists of four routers, two layer 3 switches and two layer 2 switches. In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.ASW1 and ASW2 are layer 2 switches.NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. The client workstations receive their IP address and default gateway via R4's DHCP server. The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.DSW1, DSW2 and R4 are running RIPng process name RIP ZONE. The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. Recently the implementation group has been using the test bed to do a 'proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. Each ticket has 3 sub questions that need to be answered & topology remains same. Question-1 Fault is found on which device, Question-2 Fault condition is related to, Question-3 What exact problem is seen & what needs to be done for solution Client is unable to ping IP 209.65.200.241 Solution: Steps need to follow as below:- When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 Ipconfig ----- Client will be receiving IP address 10.2.1.3- IP 10.2.1.3 will be able to ping from R4, R3, R2, R1-Look for BGP NeighbourshipSh ip bgp summary ---- State of BGP will be in established state & will be able to receive I prefix (209.65.200.241)- As per troubleshooting we are able to ping ip 10.2.1.3 from R1 & BGP is also receiving prefix of webserver & we are able to ping the same from R1. Further troubleshooting needs to be done on R1 on serial 0/0/1- Check for running config. i.e sh run for interface serial 0/0/1.. !From above snapshot we are able to see that IP needs to be PAT to serial 0/0/1 to reach web server IP (209.65.200.241). But in access-list of NAT IP allowed IP is 10.1.0.0/16 is allowed & need 10.2.0.0 /16 to - As per troubleshooting we are able to ping ip 10.2.1.3 from R1 & BGP is also receiving prefix of web server & we are able to ping the same from R1. Its should be checked further for running config of interface for stopping - Change required: On R1, In natting we need to add client IP address for reachability to server. QUESTION 53The implementations group has been using the test bed to do a 'proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. On which device is the fault condition located? A. R1B. R2C. R3D. R4E. DSW1F. DSW2G. ASW1 Answer: AExplanation: On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed. QUESTION 54The implementations group has been using the test bed to do a 'proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2

connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. The fault condition is related to which technology? A. BGPB. NTPC. IP NATD. IPv4 OSPF RoutingE. IPv4 OSPF RedistributionF. IPv6 OSPF RoutingG. IPv4 layer 3 security Answer: CExplanation: On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed. QUESTION 55The implementations group has been using the test bed to do a 'proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. What is the solution to the fault condition? A. Under the interface Serial0/0/0 configuration enter the ip nat inside command.B. Under the interface Serial0/0/0 configuration enter the ip nat outside command.C. Under the ip access-list standard nat_trafic configuration enter the permit 10.2.0.0 0.0.255.255 command.D. Under the ip access-list standard nat_trafic configuration enter the permit 209.65.200.0 0.0.255command. Answer: CExplanation:On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed. Ticket 6: R1 ACL Topology Overview (Actual Troubleshooting lab design is for below network design) - Client Should have IP 10.2.1.3- EIGRP 100 is running between switch DSW1 & DSW2- OSPF (Process ID 1) is running between R1, R2, R3, R4- Network of OSPF is redistributed in EIGRP- BGP 65001 is configured on R1 with Webserver cloud AS 65002- HSRP is running between DSW1 & DSW2 Switches The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. This network consists of four routers, two layer 3 switches and two layer 2 switches. In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.ASW1 and ASW2 are layer 2 switches.NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. The client workstations receive their IP address and default gateway via R4's DHCP server. The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.DSW1, DSW2 and R4 are running RIPng process name RIP ZONE. The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. Recently the implementation group has been using the test bed to do a 'proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. Each ticket has 3 sub questions that need to be answered & topology remains same. Question-1 Fault is found on which device, Question-2 Fault condition is related to, Question-3 What exact problem is seen & what needs to be done for solution Client is unable to ping IP 209.65.200.241... Solution: Steps need to follow as below:- When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4- Ipconfig ----- Client will be receiving IP address 10.2.1.3- IP 10.2.1.3 will be able to ping from R4, R3, R2, R1- Look for BGP Neighbourship- Sh ip bgp summary ----- State of BGP will be in active state. This means connectivity issue between serial-Check for running config. i.e sh run --- over here check for access-list configured on interface as BGP is down (No need to check for NAT configuration as its configuration should be right as first need to bring BGP up) above snapshot we can see that access-list of edge_security on R1 is not allowing wan IP network - Change required: On R1, we need to permit IP 209.65.200.222/30 under the access list. QUESTION 56The implementations group has been using the test bed to do a `proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. On which device is the fault condition located? A. R1B. R2C. R4E. DSW1F. DSW2G. ASW1 Answer: AExplanation: On R1, we need to permit IP 209.65.200.222/30 under the access list. QUESTION 57The implementations group has been using the test bed to do a 'proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. The fault condition is related to which technology? A. BGPB. NTPC. IP NATD. IPv4 OSPF RoutingE. IPv4 OSPF RedistributionF. IPv6 OSPF RoutingG. IPv4 layer 3 security Answer: GExplanation: On R1, we need to permit IP

209.65.200.222/30 under the access list. QUESTION 58The implementations group has been using the test bed to do a proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. What is the solution to the fault condition? A. Under the interface Serial 0/0/1 enter the ip access-group edge security out command.B. Under the ip access-list extended edge security configuration add the permit ip 209.65.200.224 0.0.0.3 any command.C. Under the ip access-list extended edge security configuration delete the deny ip 10.0.0.0.0 0.255.255.255 any command.D. Under the interface Serial0/0/0 configuration delete the ip access-group edge security in command and enter the ip access-group edge security out command. Answer: BExplanation:On R1, we need to permit IP 209.65.200.222/30 under the access list. Ticket 7: Port Security Topology Overview (Actual Troubleshooting lab design is for below network design) - Client Should have IP 10.2.1.3- EIGRP 100 is running between switch DSW1 & DSW2- OSPF (Process ID 1) is running between R1, R2, R3, R4- Network of OSPF is redistributed in EIGRP- BGP 65001 is configured on R1 with Webserver cloud AS 65002- HSRP is running between DSW1 & DSW2 Switches The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. This network consists of four routers, two layer 3 switches and two layer 2 switches. In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.ASW1 and ASW2 are layer 2 switches.NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. The client workstations receive their IP address and default gateway via R4's DHCP server. The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. Recently the implementation group has been using the test bed to do a proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. Each ticket has 3 sub questions that need to be answered & topology remains same. Question-1 Fault is found on which device, Question-2 Fault condition is related to, Question-3 What exact problem is seen & what needs to be done for solution Client is unable to ping IP 209.65.200.241 Solution: Steps need to follow as below:- When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 ipconfig ----- Client will be getting 169.X.X.X- On ASW1 port Fa1/0/1 & Fa1/0/2 access port VLAN 10 was assigned but when we checked interface it was showing downSh run ----- check for running config of int fa1/0/1 & fa1/0/2 (switchport access Vlan 10 will be there with switchport security command). Now check as belowSh int fa1/0/1 & sh int fa1/0/2 - As seen on interface the port is in err-disable mode so need to clear port. - Change required: On ASW1, for port security need command to remove port-security under interface under interface fa1/0/1 & fa1/0/2. QUESTION 59The implementations group has been using the test bed to do a 'proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. On which device is the fault condition located? A. R1B. R2C. R3D. R4E. DSW1F. DSW2G. ASW1H. ASW2 Answer: GExplanation:port security needs is configured on ASW1. QUESTION 60The implementations group has been using the test bed to do a 'proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. The fault condition is related to which technology? A. NTPB. Switch-to-Switch ConnectivityC. Access VlansD. Port SecurityE. VLAN ACL / Port ACLF. Switch Virtual Interface Answer: DExplanation: Port security is causing the connectivity issues, On ASW1, we need to remove port-security under interface fa1/0/1 & fa1/0/2. At Lead2pass we verify that 100% of the 300-135 exam questions in exam test prep package are real questions from a recent version of the 300-135 test you are about to take. We have a wide library of 300-135 exam dumps. 300-135 new questions on Google Drive: https://drive.google.com/open?id=0B3Syig5i8gpDRnY1enRHb3hVeDQ 2017 Cisco 300-135 exam dumps (All 110 Q&As) from

Lead2pass: https://www.lead2pass.com/300-135.html [100% Exam Pass Guaranteed]